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that the lens is diffraction limited, i.e., the exit pupil has
been chosen so that the image of a point source is the
Airy intensity distribution.

But first, we remark that the intensity in this problem
is related to that of the complementary case, the image of
an opaque disc of radius a. According to Babinet’s prin-
ciple, the sum of the light amplitudes for these two cases
is the constant light amplitude without either. (This is
easy to see from the linearity of the Huyghens-Fresnel-
Fraunhofer expression discussed in Appendix B 3). So,
where one is light, the other is dark.

Suppose the hole is illuminated with incoherent light,
as in ordinary microscopy. If a < λ/4, the illumination is
nonetheless effectively coherent, since any incident plane
wave of random phase will have little phase difference
across the hole. If a > λ/2, the illumination may be
considered incoherent. This is the case considered here.

1. Incoherent Illumination

If this were geometrical optics, light from each uni-
formly illuminated point of the object plane would pass
through the lens and be focused as an illuminated point
on the image plane. The properly scaled image of all
these illuminated points would be a uniformly illumi-
nated circle of radius a. We shall call the circumference
of this circle the “image circle edge.” The new wrinkle is
that diffraction surrounds each imaged point with its own
Airy disc (assuming that spherical aberration is negligi-
ble), so that the image extends beyond the image circle
edge. The intensities add so, at a point r on the image
plane, the net intensity is

I(r) ∼ 1
π

∫
A0

dA0

[
J1(kb̃|r− r0|)

|r− r0|
]2

, (G1)

where A0 is the area of the image circle, and b̃ ≡ b/f is
called the numerical aperture.

For a >> rA, where rA is the Airy radius, the intensity
at the center point of the image circle is, by (G1),

I(0) ∼ 1
π

∫ a

0
r0dr0

∫ 2π

0
dφ

[
J1(kb̃r0)

r0

]2

≈ 1.

In this equation, the limit a has been extended to∞ with
no appreciable error, since the major contribution is from
Airy discs centered within distance rA of the origin.

As the point of interest moves off center, the intensity
remains essentially constant, until at a distance ≈ a− rA

from the center, a distance rA from the image circle edge.
Then I starts to decrease, reaching the value ≈ .5 at the
edge. This is because, at the edge, ≈half the Airy discs

contribute intensity, compared to the discs which con-
tribute intensity at a point well inside the image circle.

Now, we turn to quantitative analysis of the general
case, with no restriction of the relative sizes of a and rA.
We shall calculate the intensity (G1) outside the image
circle, at r = 0 which is placed a distance z beyond the
image circle edge, i.e., the center of the image circle in
this coordinate system is at r = a + z. The contribut-
ing Airy disc centers lie within the image circle, between
radius r0 (z ≤ r0 ≤ 2a + z) and radius r0 + dr0, along
an arc subtending an angle 2φ. The hole circumference
(x−a−z)2 +y2 = a2 cuts this arc at two points. Setting
x = r0 cos φ and y = r0 sinφ in this expression allows one
to find cos φ. Eq. (G1) becomes

Iout(z) ∼ 2
π

∫ 2a+z

z
dr0 cos−1

[
r2
0 + z2 + 2az

2r0(a + z)

]
J2

1 (kb̃r0)
r0

(G2)
For completeness, we put here the comparable expres-

sion for the intensity inside the image circle. Again, we
calculate the intensity (G1) at r = 0, where this new
coordinate system origin is a distance z away from the
center of the image circle. There are two contributions,
one from a circular area of radius a − z, the other from
the rest of the disc (a− z ≤ r0 ≤ a + z):

Iin(z) ∼ 2
∫ a−z

0
dr0

J2
1 (kb̃r0)

r0

+
2
π

∫ a+z

a−z
dr0 cos−1

[
r2
0 + z2 − a2

2r0z

]
J2

1 (kb̃r0)
r0

. (G3)

For large a, (G2) becomes

Iout(z) ≈ 2
π

∫ ∞

z
dr0 cos−1

[
z

r0

]
J2

1 (kb̃r0)
r0

This is a function of kb̃z = 3.83(z/rA). Numerical eval-
uation shows Iout(z) drops from .5 at z = 0 to ≈ .05 at
z = rA. While it is somewhat subjective, this suggests
that we take the perceived edge of the image of the hole
to be located where the intensity is 5% of its maximum
value at the center of the image circle. Thus, diffraction
increases the radius of a large hole from a to R ≈ a+ rA.

By changing the variable of integration in (G2) to r0/a,
one sees that the intensity is a function of two variables,
z/a and kb̃a/3.83 = a/rA. For each value of a/rA, one
can numerically solve Eq. (G2) for the value of z/a for
which I(z) = .05I(0). This is the ratio R/a, where R is
defined as the radius of the image. A graph of R/rA vs
a/rA is given in Fig. 12, and is discussed in section IIIH.
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